Modeling solar cycle irregularities using flux transport dynamo models

Bidya Binay Karak
PhD student
Indian Institute of Science

Collaborators:
Prof. Arnab Rai Choudhuri (IISc, Bangalore)
Dr. Dibyendu Nandy (IISER, Kolkata)
Sunspot number of last 300 years
Dikpati et al. (2008) claim that the Waldmeier effect does not exist in sunspot area data.

Karak & Choudhuri (2011) show:

WE1: anti-correlation between the rise times and the amplitudes

WE2: positive correlation between the rise rates and the amplitudes
Grand minima:

- Maunder minimum period = 1645 to 1715 (Eddy, 1976; Foukal, 1990; Wilson, 1994)

- 68% of days were observed (Hoyt & Schatten 1996)

- Study of cosmogenic isotopes - C\(^{14}\): 27 grand minima in last 11,000 years (Usoskin et al. 2007)
Flux Transport dynamo
(Durney 1995; Choudhuri, Schussler & Dikpati 1995)

High diffusivity model Low diffusivity model

\[\eta_t = 10^{12} - 10^{13} \text{ cm}^2 \text{ s}^{-1} \quad \eta_t = 10^{10} - 10^{11} \text{ cm}^2 \text{ s}^{-1} \]

Mixing length theory gives \[(1/3) \times l \times v \sim 10^{12} \text{ cm}^2 \text{ s}^{-1}\]

Time scale of turbulent diffusion: \[\tau = \frac{L^2}{\eta_t}\] (where \(L\) = depth of the convection zone.)

\[\sim 2.8 \text{ years} \ (\eta_t = 5 \times 10^{12} \text{ cm}^2/\text{s}).\]

\[\sim 276 \text{ years} \ (\eta_t = 5 \times 10^{10} \text{ cm}^2/\text{s}).\]
Meridional circulation:

- Comes from the combination of Buoyancy forces, Reynolds stresses, Latitudinal pressure gradients and Coriolis forces acting on the mean zonal flow (Kitchatinov & Rudiger 1995; Miesch 2005)

- Near the surface its value ~ 20 m/s and it is poleward. (Hathaway 1996; Haber et al. 2002; Basu & Antia 2000)

- Using the mass conservation principle we construct the full profile of the MC.

Taken from Yeates et al. (2008)
Did the meridional circulation vary largely?

In flux transport dynamo:

\[\text{Period} \propto \frac{1}{V_0^{0.89}} \]
(Dikpati & Charbonneau 1999)

\[\text{Period} \propto \frac{1}{V_0^{0.885}} \]
(Yeates, Nandy Mackey 2008)

Wang et al. (2002); Hathaway et al. (2003); Javaraiah & Ulrich (2006)---amplitude of MC varied largely with the solar cycle.

Taken from Karak & Choudhuri (2010)
Sources of irregularities in flux transport dynamo

- Fluctuations in B-L process of generating poloidal field
 - High diffusivity
 - Low diffusivity

- Fluctuations in meridional circulation
 - High diffusivity
 - Low diffusivity

Can explain the correlation between the polar field and the next sunspot cycle

Jiang, Chatterjee & Choudhuri (2007)
Yeates, Nandy & Mackey (2008)
Effect of Fluctuations of Meridional circulation

\[\frac{\partial A}{\partial t} + \ldots = \eta_t (\nabla^2 - \frac{1}{s^2}) A + S_\alpha \]

\[\frac{\partial B}{\partial t} + \ldots = \eta_t (\nabla^2 - \frac{1}{s^2}) B + s(\nabla \cdot B) \Omega \]

Meridional circulation

More time to induct toroidal field

Stronger cycle

More time for the diffusion

Weaker cycle

In low diffusivity model

In high diffusivity model

(Yeates, Nandy & Mackey 2008)
Modeling last 23 cycles using variable meridional circulation

From High diffusivity Model (Chatterjee, Nandy & Choudhuri 2004)

In this model, Period \(\propto \frac{1}{v_0^{0.70}} \)

Karak (2010)
On repeating the same calculation in Low diffusivity Model (Dikpati & Charbonneau 1999)

Karak (2010)
Theoretical study of Waldmeier effect

Introducing stochastic fluctuations

in poloidal field source term

in meridional circulation

Karak & Choudhuri (2011)
1) Fluctuation in meridional circulation is required to explain WE.

2) Only high diffusivity model is able to explain WE.

Karak & Choudhuri (2011)
Can a large fluctuation in meridional circulation lead to a Maunder-like minimum?

It reproduces the strong asymmetry (Ribes & Nesme-Ribes 1993; Sokoloff & Nesme-Ribes 1994).

Karak (2010)
Sudden initiation of MM but gradual recovery (Usoskin et al. 2000)

Karak (2010)
If we decrease the poloidal field to a very low value at the beginning of the Maunder minimum, then we can reproduce a Maunder-like grand minimum.

Choudhur & Karak (2009)
Effect of Turbulent Pumping on Solar Cycles Memory: Investigations using a Kinematic Dynamo Model

Authors: Bidya Binay Karak & Dibyendu Nandy
Thank You
Repeat the same calculation in Low diffusivity model

Karak (2010)
From the study of 14C data in tree rings, Miyahara et al. (2004, 2010) say that the solar cycle was continued during Maunder minimum, but **with a period of 13–15 yr** instead of regular 11-yr period.

It explains the cyclic behaviour of solar activity (Schwabe cycle) during MM (Beer et al. 1998, Miyahara et al. 2004)

Karak (2010)