AA 372
Homework 1

1. Read/Write is much slower than computation: Write a simple
program (in whichever language you are comfortable, Fortran or C) to
verify that read/write to disk is much slower than computation. You
can write a code corresponding to the following pseudocode (also see
the accompanying Fortran code read_2d_data.f90):
do i=1,imax
do j=1,ymazx

a(i,j) = float(i-j)/float(i+j)

write(11,%) a(i,j)
enddo
enddo
Find the wall-time it takes (the accompanying Fortran code has com-
mands to measure wall time; please look up analogous commands for
C if that is your preferred language) to run this code. Compare this
time with the case when the write statement is commented. Why does
commenting out the write statement make the code run much faster?

Now comment the write statement and compare the execution speed
of different mathematical operations. Instead of a(%,j) = float(i-
7)/float(i+j) try a(i,j) = float(i-j) + float(i+j) and a(i,j) = float(i-j)
* float(i+j). How does the wall-time change? Now try more compli-
cated functions a(i,j) = (float(i-j)/float(i+j))**0.5, a(i,j) = float(i-
7)**(float(i)/float(j)), and so on. Compare the wall-times for each case.
Can you explain which operations took longer and why?

See whether changing the order of i and j loops in the code makes
any difference? How does the time taken depend on imax, jmax? Plot
wall-time as a function of imax (=jmax) for both cases, the inner i loop
and the inner j loop. This should teach you something about different
cache sizes, whether 2D arrays are saved in row major or column major
fashion in memory, and why it is faster to use the data stored
adjacent in the memory.

Compiler optimizations: Try compiling the code with -O0 (compiler
optimizations turned off) flag and compare with the time it takes to
run with the default compiler options, and with -O2 and -O3. These

optimization flags are available on most compilers; read the man pages
for gce or ifort or gfortran (depending on the compiler that you are
using) to know more.

. Bonus: Did you know that the run-time for if-then statements (in
general control statements) depends on whether the condition is pre-
dictable (true/false)? This is because the microprocessor speculatively
executes the predicted branch. If there is misprediction the partially
executed steps are discarded and the correct branch is executed with
a delay. This strategy is followed because its faster to compute than
wait to check if the condition is met. Read more at the link provided
(“branch prediction”) in references. Write a simple program and show
that indeed the run-time depends on the sequence of true/false in the
conditional statement.

