
AA 372

Homework II
Please submit your codes together with your write-ups. Please email/meet

me if something is unclear.

1. Lax-Wendroff Method: In class we showed that the forward in time
centered in space (FTCS) scheme for advection equation,

∂f

∂t
+ u

∂f

∂x
= 0, (1)

is unconditionally unstable. FTCS is first order accurate in time and
second order accurate in space. We can construct a method which is
second order accurate in both space and time as follows. Recall that the
the second order accurate approximation in time for ∂f/∂t, centered
at (i, n), is
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∂t
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∆t
− ∆t
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∂2f

∂t2
+O(∆t2).

Using Eq. 1 we can express ∂2f/∂t2 as u2(∂2f/∂x2). Thus, the second
order accurate method (both in space and time) is
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2∆x
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where we have used the centered in space (and hence second order
accurate) expressions for ∂f/∂x and ∂2f/∂x2. Eq. 2 is known as the
Lax-Wendroff scheme for advection equation.

Perform the von Neumann stability analysis (VNSA) on Eq. 2.
What is the limit on u∆t/∆x such that the amplification factor is
≤ 1? This limit is known as the Courant-Friedrichs-Lewy condition
and is generally applicable for all stable methods solving the advec-
tion equation (and to hyperbolic/wave equations in general where u is
replaced by the fastest signal speed).

Is Eq. 2 consistent with the advection equation (Eq. 1)? Will the
solution converge to the correct result as ∆x, ∆t → 0? Write the
modified equation for the Lax-Wendroff scheme. Is the leading order
error term dispersive or diffusive? How does it connect to VNSA?

We will come back to this once we start with PDEs.
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2. Thomas Algorithm for tridiagonal systems: Write a program, in
the language of your choice, to solve a tridiagonal system of equations
Ax = d, where A is a tridiagonal matrix,

A =



b1 c1
a2 b2 c2

a3 b3 c3
...

an−2 bn−2 cn−2

an−1 bn−1 cn−1

an bn


.

Use Thomas algorithm with forward elimination and back-substitution
as discussed in class. As discussed in the class, a tridiagonal system is
obtained when performing cubic spline interpolation.

Another situation where an almost-tridiagonal system results is when
writing the implicit finite-difference formula (first order accurate in
time and second ordered accurate in space) for the heat diffusion equa-
tion,

∂f

∂t
= D

∂2f

∂x2
, (3)

given by

fn+1
i − fn

i

∆t
= D

fn+1
i+1 − 2fn+1

i + fn+1
i−1

∆x2
, or (4)

Afn+1 = fn, (5)

where

A =



b1 c1 ... a1
a2 b2 c2

a3 b3 c3
...

an−2 bn−2 cn−2

an−1 bn−1 cn−1

cn ... an bn


;

fn+1 and fn are vectors at times tn+1 and tn respectively; bi = 1 +
2D∆t/∆x2, ai = −D∆t/∆x2, and ci = −D∆t/∆x2. Notice that we
have used periodic boundary conditions; this results in appearance of
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a1 and cn in corners apart from the tridiagonal structure. Thomas
method can be modified to solve Eq. 5 using the Sherman-Morrison
formula. Sherman-Morrison formula states that the solution of the
matrix equation

(A + uvT )x = d, (6)

where u and v are column vectors (vT is the transpose of v), is given
by solving

Ay = d,Aq = u,

and computing x = y − q(vTy)/(1 + vT q). To solve Eq. 4 you will
need to choose column vectors u and v appropriately and apply the
tridiagonal method twice. Hence the solution is O(n), where n is the
number of grid points.

Write a code to solve the diffusion equation (Eq. 3) using periodic
boundary conditions with the method discussed above and the tridi-
agonal code that you wrote. Use D = 1 and a domain going from 0
to 1. The initial condition is f = 1 for 0.4 < x < 0.6; outside this f
vanishes. Find the solution (f) at time t = 0.025; choose the timestep
∆t = 4∆x2/D. Use 256 grid points such that ∆x = 1/256. See how
the solution at t = 1 converges with increasing resolution. Plot L1
Richardson error as a function of ∆x on log-log scale; what is is order
of convergence?

Bonus: Perform VNSA on Eq. 4 and show that the implicit method
is unconditionally stable. Can you reach the same conclusion using the
modified equation?
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