PDEs (Huge Area, only scratching the surface)

Prateek Sharma (prateek@physics.iisc.ernet.in) Office: D2-08

Types of PDEs

hyperbolic, parabolic, and elliptic depending on their characteristics, or curves of information propagation; examples:

Hyperbolic
IVPs, Cauchy problems; start at $\mathrm{t}=0$ and evolve the solution

$$
\text { Parabolic } \quad \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(D \frac{\partial u}{\partial x}\right)
$$

Elliptic

1-D wave equation

 diffusion equation$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\rho(x, y)
$$

Poisson equation
boundary value problem; no evolution! find the solution which satisfies PDE and boundary conditions
simple prototypes are very instructive and guide the solution of more complicated problems

dependent variables to be propagated forward in time f
evolution equation, e.g., advection eq. $\frac{\partial f}{\partial t}+u \frac{\partial f}{\partial x}=0$
prefer to have $\frac{\partial}{\partial t}$ on LHS
boundary conditions: Dirichlet BCs (specify boundary values of f at all times), Neumann (specify derivatives at boundary); \& combinations specified in physically plausible way

BVPs

FD reduces to: $\mathrm{Ax}=\mathrm{b}$
main concern: efficiency of algorithms methods generally stable recall Jacobi relaxation, conjugategradient, steepest descent
recall: importance of spectral radius, condition number!

- What are the variables (dependent $\&$ independent)?
- What equations are satisfied in the interior of the region of interest? $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\rho(x, y)$
- What equations are satisfied by points on the boundary of the region of interest? (Here Dirichlet and Neumann conditions are possible choices for elliptic second-order equations, but more complicated boundary conditions can also be encountered.)
all conditions on BVP must be satisfied "simultaneously,"
boil down to solution of large numbers of simultaneous algebraic equations. When such equations are nonlinear, they are usually solved by linearization and iteration; solution of special, large linear sets of equations (thus matrix methods are important for BVPs!)

Flux-Conservative IVPs

flux-conservative equation

$$
\frac{\partial u}{\partial t}=-v \frac{\partial u}{\partial x} \quad u=f(x-v t) \quad \text { our old friend: advection equation }
$$

FTCS is unstable! recallVNSA, linear stability analysis by expanding in Fourier modes (WKB limit) can apply even for nonlinear eq. by linearizing; not rigorous but practically useful
Lax/Lax-Friedrichs Method in FTCS in time derivative term $u_{j}^{n} \rightarrow \frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)$

$$
\begin{array}{r}
u_{j}^{n+1}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)-\frac{v \Delta t}{2 \Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right) \quad \text { stable if CFL condition } \frac{|v| \Delta t}{\Delta x} \leq 1 \\
\text { modified equation: } \quad \frac{\partial u}{\partial t}=-v \frac{\partial u}{\partial x}+\frac{(\Delta x)^{2}}{2 \Delta t} \nabla^{2} u \longleftarrow \begin{array}{l}
\text { stabilizing diffusion term } \\
\text { numerical dissipation, or } \\
\text { numerical viscosity }
\end{array}
\end{array}
$$

for resolved modes $k \Delta x \ll 1$, amplification factor agrees with analytic result small scale modes not accurately captured but: unstable for FTCS \& stable/damped for Lax => while Lax is fine can't use FTCS
recall that stability concerns are supreme for IVPs
$\begin{array}{ll}\text { Lax method in 2 variables, e.g., } & \frac{\partial^{2} u}{\partial t^{2}}=v^{2} \frac{\partial^{2} u}{\partial x^{2}}\end{array} \begin{array}{ll}\frac{\partial r}{\partial t} & =v \frac{\partial s}{\partial x}\end{array} \quad r \equiv v \frac{\partial s}{\partial x}$
Lax in 2D
$r_{j}^{n+1}=\frac{1}{2}\left(r_{j+1}^{n}+r_{j-1}^{n}\right)+\frac{v \Delta t}{2 \Delta x}\left(s_{j+1}^{n}-s_{j-1}^{n}\right)$
$s_{j}^{n+1}=\frac{1}{2}\left(s_{j+1}^{n}+s_{j-1}^{n}\right)+\frac{v \Delta t}{2 \Delta x}\left(r_{j+1}^{n}-r_{j-1}^{n}\right)$
VNSA in 2
variables:

$$
\begin{aligned}
& \text { in 2 } \\
& \text { les: }
\end{aligned}\left[\begin{array}{c}
r_{j}^{n} \\
s_{j}^{n}
\end{array}\right]=\xi^{n} e^{i k j \Delta x}\left[\begin{array}{c}
r^{0} \\
s^{0}
\end{array}\right]\left[\begin{array}{ll}
(\cos k \Delta x)-\xi & i \frac{v \Delta t}{\Delta x} \sin k \Delta x \\
i \frac{v \Delta t}{\Delta x} \sin k \Delta x & (\cos k \Delta x)-\xi
\end{array}\right] \cdot\left[\begin{array}{l}
r^{0} \\
s^{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$ of single amplification factor

$$
\xi=\cos k \Delta x \pm i \frac{v \Delta t}{\Delta x} \sin k \Delta x \quad \text { again stable if } \quad \frac{|v| \Delta t}{\Delta x} \leq 1
$$

x-t diagrams \& characteristics

CFL condition in $\mathrm{x}-\mathrm{t}$ diagram

shaded: finite domain of dependence for hyperbolic eqs.
CFL condition: characteristics should not cross more than a grid cell

Upwinding

$u=f(x-v t) \quad$ solution should only be affected by points in upwind direction
Lax Method $u_{j}^{n+1}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)-\frac{v \Delta t}{2 \Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right) \uparrow$
symmetric w.r.t. +/- direction, unlike advection eq.; leading order error: $\mathrm{O}\left(\Delta \mathrm{t}, \Delta \mathrm{x}^{2} / \Delta \mathrm{t}\right)$

> Upwind Scheme $\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=-v_{j}^{n} \begin{cases}\frac{u_{j}^{n}-u_{j-1}^{n}}{\Delta x}, & v_{j}^{n}>0 \\ \frac{u_{j+1}^{n}-u_{j}^{n}}{\Delta x}, & v_{j}^{n}<0\end{cases}$
better than Lax, even if first order accurate in space! since inherits the upwind property of original equations
stability again governed by CFL condition: $\frac{|v| \Delta t}{\Delta x} \leq 1$
Δx accuracy improved by using a larger stencil in upwind direction:

$$
u_{x}^{-}=\frac{3 u_{i}^{n}-4 u_{i-1}^{n}+u_{i-2}^{n}}{2 \Delta x}
$$

$\mathrm{O}\left(\Delta \mathrm{t}^{2}\right)$ accuracy in time

if method is $\mathrm{O}(\Delta \mathrm{t})$ but $\mathrm{O}\left(\Delta \mathrm{x}^{2}\right) \Delta \mathrm{t} \ll \mathrm{v} \Delta \mathrm{x}$ must be chosen for accuracy
better to have same order of accuracy in space and time
staggered leapfrog method

$$
\begin{aligned}
& u_{j}^{n+1}-u_{j}^{n-1}=-\frac{\Delta t}{\Delta x}\left(F_{j+1}^{n}-F_{j-1}^{n}\right)=-\frac{v \Delta t}{\Delta x}\left(u_{j+1}^{n}-u_{j-1}^{n}\right) \\
& \xi=-i \frac{v \Delta t}{\Delta x} \sin k \Delta x \pm \sqrt{1-\left(\frac{v \Delta t}{\Delta x} \sin k \Delta x\right)^{2}} \quad \text { amplification factor; }|\mathrm{r}|=\mathrm{I} \text { for } \frac{|v| \Delta t}{\Delta x} \leq 1 \\
& \uparrow \quad \begin{array}{l|l|l|l}
\\
& \vdots & \\
\hline
\end{array} \\
& \text { t } \\
& \text { unstable for steep gradients! } \\
& \text { cured by adding small diffusion coefficient }
\end{aligned}
$$

Lax-Wendroff

Lax step: $\quad u_{j+1 / 2}^{n+1 / 2}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j}^{n}\right)-\frac{\Delta t}{2 \Delta x}\left(F_{j+1}^{n}-F_{j}^{n}\right)$
second order differencing in x,t $u_{j}^{n+1}=u_{j}^{n}-\frac{\Delta t}{\Delta x}\left(F_{j+1 / 2}^{n+1 / 2}-F_{j-1 / 2}^{n+1 / 2}\right)$
stable for $\frac{|v| \Delta t}{\Delta x} \leq 1$ as seen in HW2

shock-capturing

many eqs. Euler eqs., Burger's eq., etc. admit discontinuous solutions (a.k.a. shocks) integral (weak) form of eqs. is suited for numerical solution numerical methods should be able to capture shocks without Gibbs oscillations
artificial viscosity: numerical methods should be able to capture shocks without Gibbs oscillations Burger's equation $\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0$

$$
\begin{gathered}
\text { wave steepening } \\
u_{t}+u u_{x}=\varepsilon u_{x x}
\end{gathered}
$$

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\frac{\partial q}{\partial x}
$$

von Neumann Richtmyer artificial viscosity active only at shocks, $\mathrm{I}(2 \Delta \mathrm{x})$: length over which shock is smoothened

$$
q= \begin{cases}l^{2} \rho(\partial v / \partial x)^{2} & \text { if } \quad(\partial v / \partial x)<0 \\ 0 & \text { otherwise }\end{cases}
$$

monotonicity preserving/TVD, higher-order schemes; slope/flux limiters on transport terms
Godunov finite-volume schemes: solution described in terms of volume averaged quantities in cells discontinuities at cell boundaries resolved into shocks/rarefactions and the Riemann problem solved exactly/approximately; huge area!

Diffusive IVPs

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(D \frac{\partial u}{\partial x}\right) \quad F=-D \frac{\partial u}{\partial x} \quad \mathrm{D}>0 \text { for being well-posed }
$$

explicit FTCS for D=constant: $\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=D\left[\frac{u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}}{(\Delta x)^{2}}\right] \quad \begin{aligned} & \text { VNSA: } \\ & \xi=1-\frac{4 D \Delta t}{(\Delta x)^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right)\end{aligned}$
stability criterion: $\quad \frac{2 D \Delta t}{(\Delta x)^{2}} \leq 1 \quad$ time-step \sim diffusion timescale across a cell
diffusion time-step: $\quad \tau \sim \frac{\lambda^{2}}{D} \quad \lambda^{2} /(\Delta x)^{2} \quad$ timesteps before anything happens at scales of interest implicit/semi-implicit:

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=D\left[\frac{u_{j+1}^{n+1}-2 u_{j}^{n+1}+u_{j-1}^{n+1}}{(\Delta x)^{2}}\right] \text { fully implicit, unconditionally stable; HW2 }
$$

$\frac{\partial^{2} u}{\partial x^{2}}=0 \quad$ equilibrium solution as $\Delta t \rightarrow \infty$ but only Ist $^{\text {st }}$ order accurate in time

Crank-Nicholson scheme: centered in space \& time $\mathrm{O}\left(\Delta \mathrm{t}^{2}, \Delta \mathrm{x}^{2}\right)$

$$
\begin{aligned}
& \frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=\frac{D}{2}\left[\frac{\left(u_{j+1}^{n+1}-2 u_{j}^{n+1}+u_{j-1}^{n+1}\right)+\left(u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}\right)}{(\Delta x)^{2}}\right] \\
& \xi=\frac{1-2 \alpha \sin ^{2}\left(\frac{k \Delta x}{2}\right)}{1+2 \alpha \sin ^{2}\left(\frac{k \Delta x}{2}\right)} \text { unconditionally stable, but as } \Delta t \rightarrow \infty\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{n+1}=-\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{n}
\end{aligned}
$$

=> initial disturbances at small scales are maintained at late times!

$$
D=D(x) \quad \frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=\frac{D_{j+1 / 2}\left(u_{j+1}^{n}-u_{j}^{n}\right)-D_{j-1 / 2}\left(u_{j}^{n}-u_{j-1}^{n}\right)}{(\Delta x)^{2}}
$$

$$
D_{j+1 / 2} \equiv D\left(x_{j+1 / 2}\right) \quad \text { for stability: } \Delta t \leq \min _{j}\left[\frac{(\Delta x)^{2}}{2 D_{j+1 / 2}}\right]
$$

nonlinear $D=D(u) \quad$ if $d z=D(u) d u \quad$ RHS $=\frac{z_{j+1}^{n+1}-2 z_{j}^{n+1}+z_{j-1}^{n+1}}{(\Delta x)^{2}}$
now linearize $z_{j}^{n+1} \equiv z\left(u_{j}^{n+1}\right)=z\left(u_{j}^{n}\right)+\left.\left(u_{j}^{n+1}-u_{j}^{n}\right) \frac{\partial z}{\partial u}\right|_{j, n}$

$$
=z\left(u_{j}^{n}\right)+\left(u_{j}^{n+1}-u_{j}^{n}\right) D\left(u_{j}^{n}\right)
$$

uncond. stable, semi-implicit, tridiagonal form

Multi-D IVPs

Lax in 2D:

$$
\frac{\partial u}{\partial t}=-\nabla \cdot \mathbf{F}=-\left(\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}\right)
$$

$$
\begin{aligned}
x_{j} & =x_{0}+j \Delta \\
y_{l} & =y_{0}+l \Delta
\end{aligned}
$$

$$
u_{j, l}^{n+1}=\frac{1}{4}\left(u_{j+1, l}^{n}+u_{j-1, l}^{n}+u_{j, l+1}^{n}+u_{j, l-1}^{n}\right)
$$

$$
-\frac{\Delta t}{2 \Delta}\left(F_{j+1, l}^{n}-F_{j-1, l}^{n}+F_{j, l+1}^{n}-F_{j, l-1}^{n}\right)
$$

VNSA for $\quad F_{x}=v_{x} u, \quad F_{y}=v_{y} u \quad u_{j, l}^{n}=\xi^{n} e^{i k_{x} j \Delta} e^{i k_{y} l \Delta}$
$\Delta t \leq \frac{\Delta}{\sqrt{2}\left(v_{x}^{2}+v_{y}^{2}\right)^{1 / 2}} \quad \Delta t \leq \frac{\Delta}{\sqrt{N}|v|} \quad$ in N dimensions; similarly for L-W
Diffusion Equation in Multidimensions

$$
\frac{\partial u}{\partial t}=D\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Crank-Nicolson in 2D: $\quad u_{j, l}^{n+1}=u_{j, l}^{n}+\frac{1}{2} \alpha\left(\delta_{x}^{2} u_{j, l}^{n+1}+\delta_{x}^{2} u_{j, l}^{n}+\delta_{y}^{2} u_{j, l}^{n+1}+\delta_{y}^{2} u_{j, l}^{n}\right)$
sparse but not easily solvable matrix:

$$
\text { where } \quad \alpha \equiv \frac{D \Delta t}{\Delta^{2}} \quad \Delta \equiv \Delta x=\Delta y
$$

Jacobi/related relaxation, CG
for explicit methods in N-D $\Delta t \leq \frac{\Delta^{2}}{2 N D}$

$$
\delta_{x}^{2} u_{j, l}^{n} \equiv u_{j+1, l}^{n}-2 u_{j, l}^{n}+u_{j-1, l}^{n}
$$

Operator Splitting

alternating-direction implicit method (ADI) $\quad u_{j, l}^{n+1 / 2}=u_{j, l}^{n}+\frac{1}{2} \alpha\left(\delta_{x}^{2} u_{j, l}^{n+1 / 2}+\delta_{y}^{2} u_{j, l}^{n}\right)$
results in easily solvable tridiagonal system

$$
u_{j, l}^{n+1}=u_{j, l}^{n+1 / 2}+\frac{1}{2} \alpha\left(\delta_{x}^{2} u_{j, l}^{n+1 / 2}+\delta_{y}^{2} u_{j, l}^{n+1}\right)
$$

Operator Splitting Methods Generally

$$
\begin{array}{clrl}
\frac{\partial u}{\partial t}=\mathcal{L} u \quad \mathcal{L} u=\mathcal{L}_{1} u+\mathcal{L}_{2} u+\cdots+\mathcal{L}_{m} u & u^{n+(1 / m)} & =\mathcal{U}_{1}\left(u^{n}, \Delta t\right) \\
u^{n+(2 / m)} & =\mathcal{U}_{2}\left(u^{n+(1 / m)}, \Delta t\right) \\
\frac{\partial u}{\partial t}=-v \frac{\partial u}{\partial x}+D \frac{\partial^{2} u}{\partial x^{2}} \text { apply L-W for advection step \& CN for diffusion } & \ldots
\end{array}
$$

$$
u^{n+1}=\mathcal{U}_{m}\left(u^{n+(m-1) / m}, \Delta t\right)
$$

ADI: can think of as operator splitting

$$
\begin{aligned}
u^{n+1 / m} & =\mathcal{U}_{1}\left(u^{n}, \Delta t / m\right) \\
u^{n+2 / m} & =\mathcal{U}_{2}\left(u^{n+1 / m}, \Delta t / m\right) \\
& \cdots \\
u^{n+1} & =\mathcal{U}_{m}\left(u^{n+(m-1) / m}, \Delta t / m\right)
\end{aligned}
$$

very useful because we want to simulate several processes simultaneously!
several combinations of splitting: Strang splitting, etc.

Fourier Method for BVPs

$\mathbf{A} \cdot \mathbf{u}=\mathbf{b} \quad$ for both linear and nonlinear (need to linearize in this case) problems
Fourier methods when regular boundaries \& constant coefficients

2-D Poisson eq.:

$$
\frac{u_{j+1, l}-2 u_{j, l}+u_{j-1, l}}{\Delta^{2}}+\frac{u_{j, l+1}-2 u_{j, l}+u_{j, l-1}}{\Delta^{2}}=\rho_{j, l}
$$ w. different BCs

$$
\begin{aligned}
& \mathbf{u}_{j-1}+\mathbf{T} \cdot \mathbf{u}_{j}+\mathbf{u}_{j+1}=\mathbf{g}_{j} \Delta^{2} \\
& \mathbf{u}_{j}^{T}=\left(u_{j, 0}, u_{j, 1}, . ., u_{j, L}\right) \\
& \mathbf{T} \cdot \mathbf{u}_{j}=u_{j, l+1}-4 u_{j, l}+u_{j, l-1}
\end{aligned}
$$

vector form at interior points
discrete IFT

$$
u_{j l}=\frac{1}{J L} \sum_{m=0}^{J-1} \sum_{n=0}^{L-1} \widehat{u}_{m n} e^{-2 \pi i j m / J} e^{-2 \pi i l n / L} \quad \rho_{j l}=\frac{1}{J L} \sum_{m=0}^{J-1} \sum_{n=0}^{L-1} \widehat{\rho}_{m n} e^{-2 \pi i j m / J} e^{-2 \pi i l n / L}
$$

$\widehat{u}_{m n}\left(e^{2 \pi i m / J}+e^{-2 \pi i m / J}+e^{2 \pi i n / L}+e^{-2 \pi i n / L}-4\right)=\widehat{\rho}_{m n} \Delta^{2}$

$$
\widehat{u}_{m n}=\frac{\widehat{\rho}_{m n} \Delta^{2}}{2\left(\cos \frac{2 \pi m}{J}+\cos \frac{2 \pi n}{L}-2\right)}
$$

discrete DFT $\quad \widehat{\rho}_{m n}=\sum_{j=0}^{J-1} \sum_{l=0}^{L-1} \rho_{j l} e^{2 \pi i m j / J} e^{2 \pi i n l / L} \quad$ compute $u_{j l}$ by IFT for periodic BCs $\quad u_{j l}=u_{j+J, l}=u_{j, l+L}$

Dirichlet boundary condition $u=0$: use sin transforms which vanish at boundaries $u_{j l}=\frac{2}{J} \frac{2}{L} \sum_{m=1}^{J-1} \sum_{n=1}^{L-1} \widehat{u}_{m n} \sin \frac{\pi j m}{J} \sin \frac{\pi l n}{L} \quad \widehat{\rho}_{m n}=\sum_{j=1}^{J-1} \sum_{l=1}^{L-1} \rho_{j l} \sin \frac{\pi j m}{J} \sin \frac{\pi l n}{L}$
inhomogeneous BCs: for example $u=0$ on all boundaries except $u=f(y)$ on the boundary $x=J \Delta$
u^{H} of the homogeneous equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad$ that satisfies the BC

$$
u_{j l}^{H}=\frac{2}{L} \sum_{n=1}^{L-1} A_{n} \sinh \frac{\pi n j}{J} \sin \frac{\pi n l}{L} \quad \text { where } \quad A_{n}=\frac{1}{\sinh \pi n} \sum_{l=1}^{L-1} f_{l} \sin \frac{\pi n l}{L}
$$

$$
\text { full solution: } u=u_{j l}+u_{j l}^{H}
$$

for general $\mathrm{BCs} \mathrm{u}=\mathrm{u}^{\prime}+\mathrm{u}^{\mathrm{B}}$ where $\mathrm{u}^{\prime}=0$ on boundary and $\mathrm{u}^{\mathrm{B}}=0$ everywhere except boundary; since boundary terms are known they can be taken to RHS; they affect RHS at the last active zone close to boundary; see NR for more

Cyclic Reduction

FFT methods are limited as applicable if PDE has constant coefficients; cyclic reduction is more general

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+b(y) \frac{\partial u}{\partial y}+c(y) u=g(x, y)
$$ arises often for Poisson/Helmholz eq. in cylindrical/spherical coordinates

this eq. can be FD as

$$
\left.\begin{array}{l}
\mathbf{u}_{j-1}+\mathbf{T} \cdot \mathbf{u}_{j}+\mathbf{u}_{j+1}=\mathbf{g}_{j} \Delta^{2} \\
\mathbf{u}_{j-2}+\mathbf{T} \cdot \mathbf{u}_{j-1}+\mathbf{u}_{j}=\mathbf{g}_{j-1} \Delta^{2} \\
\mathbf{u}_{j-1}+\mathbf{T} \cdot \mathbf{u}_{j}+\mathbf{u}_{j+1}=\mathbf{g}_{j} \Delta^{2} \\
\mathbf{u}_{j}+\mathbf{T} \cdot \mathbf{u}_{j+1}+\mathbf{u}_{j+2}=\mathbf{g}_{j+1} \Delta^{2}
\end{array}\right\} \mathbf{p}^{\text {combine }}
$$

$$
\begin{aligned}
& \mathbf{u}_{j-2}+\mathbf{T}^{(1)} \cdot \mathbf{u}_{j}+\mathbf{u}_{j+2}=\mathbf{g}_{j}^{(1)} \Delta^{2} \\
& \mathbf{T}^{(1)}=2 \mathbf{1}-\mathbf{T}^{2} \\
& \mathbf{g}_{j}^{(1)}=\Delta^{2}\left(\mathbf{g}_{j-1}-\mathbf{T} \cdot \mathbf{g}_{j}+\mathbf{g}_{j+1}\right)
\end{aligned}
$$

Taking the number of mesh points to be a power of 2

$$
\underset{\text { Tridiagonal system }}{\mathbf{T}^{(f)} \cdot \mathbf{u}_{J / 2}=\Delta^{2} \mathbf{g}_{J / 2}^{(f)}}-\underset{\text { known BCs }}{-\mathbf{u}_{0}-\mathbf{u}_{J}}
$$

two equations at level f - 1 involve $\mathbf{u}_{J / 4}$ and $\mathbf{u}_{3 J / 4}$. The equation for $\mathbf{u}_{J / 4}$ involves \mathbf{u}_{0} and $\mathbf{u}_{J / 2}$, both of which are known, and hence can be solved by the usual tridiagonal routine. A similar result holds true at every stage, so we end up solving $J-1$ tridiagonal systems.

Relaxation methods

solve $\mathrm{A} x=\mathrm{b}$ iteratively; also think as a solution of time-dependent problem till it reaches steady state

$$
\mathcal{L} u=\rho \quad \text { elliptic equation in operator form written in diffusive form } \quad \frac{\partial u}{\partial t}=\mathcal{L} u-\rho
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}-\rho \\
& \text { FTCS differencing: } \quad u_{j, l}^{n+1}=u_{j, l}^{n}+\frac{\Delta t}{\Delta^{2}}\left(u_{j+1, l}^{n}+u_{j-1, l}^{n}+u_{j, l+1}^{n}+u_{j, l-1}^{n}-4 u_{j, l}^{n}\right)-\rho_{j, l} \Delta t
\end{aligned}
$$

choose $\Delta t=\Delta^{2} / 4 . \quad u_{j, l}^{n+1}=\frac{1}{4}\left(u_{j+1, l}^{n}+u_{j-1, l}^{n}+u_{j, l+1}^{n}+u_{j, l-1}^{n}\right)-\frac{\Delta^{2}}{4} \rho_{j, l} \quad$ iterate till conv.
same as Jacobi's method we saw earlier: $\quad \mathrm{Dx}=-(\mathrm{L}+\mathrm{U}) \mathrm{x}+\mathrm{b}$
Gauss-Seidel method: $\quad u_{j, l}^{n+1}=\frac{1}{4}\left(u_{j+1, l}^{n}+u_{j-1, l}^{n+1}+u_{j, l+1}^{n}+u_{j, l-1}^{n+1}\right)-\frac{\Delta^{2}}{4} \rho_{j, l} \quad$ use updated values

$$
(L+D) x=-U x+b
$$

recall that speed of convergence is governed by spectral radius, which for Poisson eq. is

$$
\left.\rho_{s} \simeq 1-\frac{\pi^{2}}{2 J^{2}}=>\text { number of steps to convergence } \propto\right)^{2} \text { (similar scaling for GS) }
$$ recall for CG: no. of steps for conv. $\sqrt{\kappa} \propto J$

Successive Over-relaxation (SOR)

$$
\begin{array}{r}
\quad(\mathbf{L}+\mathbf{D}) \cdot \mathbf{x}^{(r)}=-\mathbf{U} \cdot \mathbf{x}^{(r-1)}+\mathbf{b} \quad \text { Gauss-Seidel method } \\
\mathbf{x}^{(r)}=\mathbf{x}^{(r-1)}-(\mathbf{L}+\mathbf{D})^{-1} \cdot \frac{\left[(\mathbf{L}+\mathbf{D}+\mathbf{U}) \cdot \mathbf{x}^{(r-1)}-\mathbf{b}\right]}{-\mathbf{r}^{(r-1)}}
\end{array}
$$

overcorrect

$$
\begin{gathered}
\mathbf{x}^{(r)}=\mathbf{x}^{(r-1)}+\underset{\substack{\boldsymbol{\lambda}}}{\omega(\mathbf{L}+\mathbf{D})^{-1} \cdot \mathbf{r}^{(r-1)} \quad \text { remember } \varepsilon^{r}=\mathrm{x}^{r}-\mathrm{x} \rightarrow 0 \text { as } \mathrm{r}^{r}=-\mathrm{A}^{r} \rightarrow 0} \\
\text { over-relaxation parameter }
\end{gathered}
$$

$$
\epsilon^{(r)}=\left[\mathbf{I}-\omega(\mathbf{L}+\mathbf{D})^{-1} \mathbf{A}\right] \epsilon^{(r-1)}
$$

- The method is convergent only for $0<\omega<2.0<\omega<1$ under-relaxation
- The optimal choice for ω is given by $\omega=\frac{2}{1+\sqrt{1-\rho_{\mathrm{Jacobi}}^{2}}}=>\rho_{\mathrm{SOR}}=\left(\frac{\rho_{\mathrm{Jacobi}}}{1+\sqrt{1-\rho_{\mathrm{Jacobi}}^{2}}}\right)^{2}$ for Poisson eq. $\omega \simeq \frac{2}{1+\pi / J}$

$$
\rho_{\mathrm{SOR}} \simeq 1-\frac{2 \pi}{J}
$$

$$
=>\text { convergence in steps } \propto \mathrm{J}!
$$

problem is that we need to know ω, not available in general

Many relaxation schemes have the smoothing property, where oscillatory modes of the error are eliminated effectively, but smooth modes are damped very slowly.
coarse grids cheaper better convergence

- Relax on Au=f on $\Omega^{4 h}$ to obtain initial guess $v^{2 h}$
- Relax on $A u=f$ on $\Omega^{2 h}$ to obtain initial guess v^{h}
- Relax on $A u=f$ on Ω^{h} to obtain ... final solution???

Full Multigrid (FMG)

- Restriction \rightarrow
- Interpolation \rightarrow
- High-order Interpolation \rightarrow

more in:A Multigrid Tutorial, Briggs et al.

