Verwey transition in Fe_3O_4 investigated using LDA+ DMFT

L. Craco, M. S. Laad, and E. Muller Hartmann
presented by Soumen Bag

IISc, Bangalore

1 Sept, 2016
$Fe_3O_4(AB_2O_3)$. $A^{3+}, B^{(3+,2+)}$.

At high temperature it has FCC lattice with two formula unit in the basis.

Verwey, Nature, 1939

L. Craco, M. S. Laad, and E. Muller Hartmann presented by Soumen Bag (IISc, Bangalore)
\(Fe_3O_4(AB_2O_3).\ A^{3+}, B^{(3+,2+)}\).

At high temperature it has FCC lattice with two formula unit in the basis.

B sites are ferromagnetically ordered by double exchanged interaction where as A and B are in anti-ferromagnetically ordered by super exchange interaction.
- $Fe_3O_4(AB_2O_3)$. A^{3+}, $B^{(3+,2+)}$.
- At high temperature it has FCC lattice with two formula unit in the basis.
- B sites are ferromagnetically ordered by double exchanged interaction where as A and B are in anti-ferromagnetically ordered by super exchange interaction.
- Curie Temperature is 858K.
- It is ideal candidate for room temperature spintronic application.
- \(\text{Fe}_3\text{O}_4(\text{AB}_2\text{O}_3) \). \(A^{3+}, B^{(3+,2+)} \).
- At high temperature it has FCC lattice with two formula unit in the basis.
- B sites are ferromagnetically ordered by double exchanged interaction where as A and B are in anti-ferromagnetically ordered by super exchange interaction.
- Curie Temperature is 858K.
- It is ideal candidate for room temperature spintronic application.
- \(\text{Fe}_3\text{O}_4(\text{AB}_2\text{O}_3) \). \(A^{3+}, B^{(3+,2+)} \).
- At high temperature it has FCC lattice with two formula unit in the basis.
- B sites are ferromagnetically ordered by double exchanged interaction where as A and B are in anti-ferromagnetically ordered by super exchange interaction.
- Curie Temperature is 858K.
- It is ideal candidate for room temperature spintronic application.

- Verwey transition at 122K(\(T_v \)).
- conductivity jump by factor of 100 across \(T_v \).
PES support insulator to insulator transition

D. Schrupp et al. EPL 2005
soft X-ray photo-emission data shows jump in the spectral onset energy across T_v

inset shows hysteresis during cooling and heating.

it shows spectral weight transfer (SWT) from low energy to high energy.

D. Schrupp et al. EPL 2005
What else associated with this transition?

$L. \text{ Craco, M. S. Laad, and E. Muller Hartmann}$ presented by Soumen Bag (IISc, Bangalore)

1 Sept, 2016 4 / 18
What else associated with this transition?

- $\text{Fe}^{3+} \text{Fe}^{3+,2+}_2 \text{O}_4$.
- Does B sublattice having charge order-disorder transition across T_V?
What else associated with this transition?

- $\text{Fe}^{3+} \text{Fe}_{2}^{3+,2+} \text{O}_{4}$.
- Does B sublattice having charge order-disorder transition across T_{V}?
- Does $\text{Fe}_{3} \text{O}_{4}$ go through structural transition and that changes the gap?
will there be charge order?

\[\text{x-ray resonant scattering} \] show absence of CO along the c axis with the periodicity of either the cubic lattice q (001) or the doubled cubic lattice q (001/2). \textit{PhysRevLett.93.156408(2004)}
will there be charge order?

× x-ray resonant scattering show absence of CO along the c axis with the periodicity of either the cubic lattice q (001) or the doubled cubic lattice q (001/2). *PhysRevLett.* **93.156408** (2004)

✓ high resolution x-ray and neutron powder diffraction data shows among four independent octahedral Fe sites, two with a charge of +2.4 and the other two of +2.6. *PhysRevLett.* **87.266401** (2001)
will there be charge order?

✗ x-ray resonant scattering show absence of CO along the c axis with the periodicity of either the cubic lattice q (001) or the doubled cubic lattice q (001/2). *PhysRevLett.93.156408*(2004)

✓ high resolution x-ray and neutron powder diffraction data shows among four independent octahedral Fe sites, two with a charge of +2.4 and the other two of +2.6. *PhysRevLett.87.266401*(2001)

will there be charge order?

✗ x-ray resonant scattering show absence of CO along the c axis with the periodicity of either the cubic lattice q (001) or the doubled cubic lattice q (001/2). PhysRevLett.93.156408(2004)

✓ high resolution x-ray and neutron powder diffraction data shows among four independent octahedral Fe sites, two with a charge of +2.4 and the other two of +2.6. PhysRevLett.87.266401(2001)

✗ above result was strongly opposed by Joaquin Garcia, Phys. Rev. Lett. 109, 049701(2012)
From the analysis of the (001/2)c reflection intensities (resonant x-ray diffraction), the orbital order in the t 2g orbitals of B sites below T_V is proved to have a large monoclinic deformation with the value of $\text{Re}[F_{xy}]/\text{Re}[F_{yz}] \approx 2$. *Physical Review B* 88, 195110 (2013)
From the analysis of the (001/2)c reflection intensities (resonant x-ray diffraction), the orbital order in the t 2g orbitals of B sites below T V is proved to have a large monoclinic deformation with the value of $Re[F_{xy}]/Re[F_{yz}] \approx 2$. PHYSICAL REVIEW B 88, 195110 (2013)

Below the Verwey transition has been high-resolution neutron and synchrotron x-ray powder-diffraction data refinement shows monoclinic P2/c symmetry cell with orthorhombic Pmca pseudosymmetry constraints on the atomic positions. Wright, PHYSICAL REVIEW B 66, 214422 (2002)
From the analysis of the (001/2)c reflection intensities (resonant x-ray diffraction), the orbital order in the t 2g orbitals of B sites below T V is proved to have a large monoclinic deformation with the value of $Re[F_{xy}]/Re[F_{yz}] \approx 2$. PHYSICAL REVIEW B 88, 195110 (2013)

Below the Verwey transition has been high-resolution neutron and synchrotron x-ray powder-diffraction data refinement shows monoclinic P2/c symmetry cell with orthorhombic Pmca pseudosymmetry constraints on the atomic positions. Wright, PHYSICAL REVIEW B 66, 214422 (2002)

Theoretical Finding
The Fermi level crosses only the minority spin energy bands, consisting of spin-up t$_{2g}$ orbitals on the Fe B sublattice. A and B are Antiferromagnetically ordered.

The spin-polarized calculations high-temperature phase is a half metallic ferrimagnet, which is experimentally not observed. It’s a d electron, expected to be localised electron. Let’s see what happen after including Hubbard U for d orbitals.

V.N. Antonov et al. PRB 65, 134410(2001)
The Fermi level crosses only the minority spin energy bands, consisting of spin-up t2g orbitals on the Fe B sublattice.

V.N.Antonov et al. PRB 65,134410(2001)
The Fermi level crosses only the minority spin energy bands, consisting of spin-up t2g orbitals on the Fe B sublattice.

A and B are Antiferromagnetically ordered.

V.N.Antonov et al. *PRB* 65,134410(2001)
The Fermi level crosses only the minority spin energy bands, consisting of spin-up t2g orbitals on the Fe B sublattice.

A and B are Antiferromagnetically ordered.

The spin-polarized calculations high-temperature phase is a half metallic ferrimagnet, which is experimentally not observed.
The Fermi level crosses only the minority spin energy bands, consisting of spin-up t2g orbitals on the Fe B sublattice.

A and B are Antiferromagnetically ordered.

The spin-polarized calculations high-temperature phase is a half metallic ferrimagnet, which is experimentally not observed.

It’s a d electron, expected to be localised electron. Let’s see what happen after including Hubbard U for d orbitals.

LMTO data
In LDA+U approach Energy functional look like.

\[
E = E_{\text{LDA}} + \sum_I \left[\frac{U_I}{2} \sum_{m,\sigma \neq m',\sigma'} n_{m'}^{\sigma'} n_m^{\sigma} - \frac{U_I}{2} n_I (n_I - 1) \right] \quad (1)
\]

where

\[
n_{m,m'}^{I\sigma} = \sum_{k,\nu} f_{k,\nu}^{\sigma} \langle \psi_{k,\nu}^{\sigma} | \phi_{m'}^I \rangle \langle \phi_{m}^I | \psi_{k,\nu}^{\sigma} \rangle \quad (2)
\]
In LDA+U approach Energy functional look like.

\[E = E_{LDA} + \sum_{l} \left[\frac{U^l}{2} \sum_{m, \sigma \neq m', \sigma'} n^l_{m', \sigma} n^l_{m, \sigma} - \frac{U^l}{2} n^l (n^l - 1) \right] \] (1)

where

\[n^l_{m, m'} = \sum_{k, \nu} f^\sigma_{k, \nu} \langle \psi^\sigma_{k, \nu} | \phi^l_{m'} \rangle \langle \phi^l_{m} | \psi^\sigma_{k, \nu} \rangle \] (2)

Hubbard corrective potential on the Kohn-Sham wave functions needed for the minimization process

\[V | \psi^\sigma_{k, \nu} \rangle = V_{LDA} | \psi^\sigma_{k, \nu} \rangle + \sum_{l, m} U^l \left(\frac{1}{2} - n^l_{m, \sigma} \right) | \phi^l_{m} \rangle \langle \phi^l_{m} | \psi^\sigma_{k, \nu} \rangle \] (3)
In LDA+U approach Energy functional look like.

\[
E = E_{\text{LDA}} + \sum_{l} \left[\frac{U_l}{2} \sum_{m, \sigma \neq m', \sigma'} n_{m, \sigma}^l n_{m', \sigma'}^l - \frac{U_l}{2} n_l^l (n_l^l - 1) \right] \tag{1}
\]

where

\[
n_{m, m'}^l = \sum_{k, \nu} f_{k, \nu}^l \langle \psi_{k, \nu}^l | \phi_{m'}^l \rangle \langle \phi_m^l | \psi_{k, \nu}^l \rangle \tag{2}
\]

Hubbard corrective potential on the Kohn-Sham wave functions needed for the minimization process

\[
V | \psi_{k, \nu}^\sigma \rangle = V_{\text{LDA}} | \psi_{k, \nu}^\sigma \rangle + \sum_{l, m} U_l \left(\frac{1}{2} - n_{m, \sigma}^l \right) | \phi_m^l \rangle \langle \phi_m^l | \psi_{k, \nu}^\sigma \rangle \tag{3}
\]

the Hubbard potential is repulsive for less than half-filled orbitals \(n_{m}^l < \frac{1}{2} \), attractive for the other.
LSDA+U

In LDA+U approach Energy functional look like.

\[E = E_{LDA} + \sum_{l} \left[\frac{U_l}{2} \sum_{m,\sigma \neq m',\sigma'} n_{m',\sigma'}^l n_{m,\sigma}^l - \frac{U_l}{2} n^l (n^l - 1) \right] \] (1)

where

\[n_{m,m'}^l = \sum_{k,\nu} f_{k,\nu}^l \langle \psi_{k,\nu}^{\sigma} | \phi_{m'}^{l} \rangle \langle \phi_{m}^{l} | \psi_{k,\nu}^{\sigma} \rangle \] (2)

Hubbard corrective potential on the Kohn-Sham wave functions needed for the minimization process

\[V | \psi_{k,\nu}^{\sigma} \rangle = V_{LDA} | \psi_{k,\nu}^{\sigma} \rangle + \sum_{l,m} U_l (\frac{1}{2} - n_{m}^{l,\sigma}) | \phi_{m}^{l} \rangle \langle \phi_{m}^{l} | \psi_{k,\nu}^{\sigma} \rangle \] (3)

the Hubbard potential is repulsive for less than half-filled orbitals \((n_{m}^{l,\sigma} < \frac{1}{2})\), attractive for the other.

The difference between the potential acting on occupied and unoccupied states (whose size is of the order of \(U\)) also gives a measure of the energy
LSDA + U of high temperature cubic structure (Fd-3m)

Figure: Electron minority spin density of states

Przemyslaw Piekarz, PRL 97, 156402 (2006)
LSDA + U of high temperature cubic structure (Fd-3m)

$U = 4 \text{ eV and } J = 0.8 \text{ eV}$

- The spin-polarized calculations high-temperature phase is a half metallic.
- Now on I will be only focusing on minority spin sector across E_F

Figure: Electron minority spin density of states

Przemyslaw Piekarz, PRL 97, 156402 (2006)
LSDA + U of low temperature monoclinic structure (P2/c)

Figure: Electron minority spin density of states

Przemyslaw Piekarz, PRL 97, 156402 (2006)

U = 4 eV and J = 0.8 eV

The spin-polarized calculations high-temperature phase (Fd\(\bar{3}m\)) is a half metallic phonon modes of \(\Delta_5\) and \(X_3\) (for details Ref.)

Low temp phase is insulating with gap 0.35 eV which is large compared to what experimentally observed.

What happen if we go beyond Hartee-Fock correction in local U?

L. Craco, M. S. Laad, and E. Muller Hartmann, Verwey transition in Fe\(_3\)O\(_4\) investigated using...
LSDA + U of low temperature monoclinic structure (P2/c)

- $U = 4 \text{ eV}$ and $J = 0.8 \text{ eV}$
- The spin-polarized calculations high-temperature phase ($Fd\bar{3}m$) is a half metallic

Figure: Electron minority spin density of states
LSDA + U of low temperature monoclinic structure (P2/c)

- U = 4 eV and J = 0.8 eV
- The spin-polarized calculations high-temperature phase (Fd\(\overline{3}m\)) is a half metallic
- Phonon modes of \(\Delta_5\) and \(X_3\) (for details Ref.)
- Low temp phase is insulating with gap 0.35 ev which is large compared to what experimentally observed.
- What happen if we go beyond Hartee-Fock correction in local U??

Przemyslaw Piekarz, PRL 97, 156402 (2006)

Figure: Electron minority spin density of states
Effective low energy Hamiltonian

Effective low energy model for Fe_3O_4.

$$H = \sum_{k\alpha\sigma} \epsilon_k c_{k\alpha\sigma}^a c_{K\sigma}^a + U \sum_{ia} n_{i\uparrow}^a n_{i\downarrow}^a + U' \sum_{iab} n_i^a n_i^b + V \sum_{\langle ij \rangle ab} n_i^a n_j^b - J_H \sum_{iab} S_i^a S_i^b + \Delta \sum_{i\sigma} (n_{i\sigma}^{A_{1g}} - n_{i\sigma}^{E_{g1}})$$

(4)

- ϵ_k the one electron band dispersion of $\text{Fe}(B)$-t2g, act as a bath in DMFT. Note that we will do DMFT on minority spin sector only.
- a, b label the A_{1g}, E_{g1} orbitals. under Jahn Teller(JT) t2g orbital split into doublet E_{g1} and signlet A_{1g} with LDA value of $\Delta=0.019\text{ev}$
Effective low energy Hamiltonian

Effective low energy model for Fe_3O_4.

$$H = \sum_{ka\sigma} \epsilon_{k} c_{a k \sigma}^{\dagger} c_{a k \sigma} + U \sum_{ia} n_{i \uparrow}^{a} n_{i \downarrow}^{a} + U' \sum_{iab} n_{i}^{a} n_{i}^{b} + V \sum_{\langle ij \rangle ab} n_{i}^{a} n_{j}^{b} - J_{H} \sum_{iab} S_{i}^{a} S_{i}^{b} + \Delta \sum_{i\sigma} (n_{i \sigma}^{A_{1g}} - n_{i \sigma}^{E_{g1}})$$

(4)

- ϵ_{k} the one electron band dispersion of Fe(B)-t2g, act as a bath in DMFT. Note that we will do DMFT on minority spin sector only.
- a, b label the A_{1g}, E_{g1} orbitals. under Jahn Teller(JT) t2g orbital split into doublet E_{g1} and signlet A_{1g} with LDA value of $\Delta=0.019$ev
- from constrained LDA $U=4.1$ev, $U'=1.7$ev, $V=0.4$ev, $J_{H}=1.0$ev
- In single site DMFT we will decouple V in the HF approximation.
Effective low energy Hamiltonian

Effective low energy model for \(\text{Fe}_3\text{O}_4 \).

\[
H = \sum_{ka\sigma} \epsilon_k^a c_{k\sigma}^a c_{K\sigma}^a + U \sum_{ia} n_{i\uparrow}^a n_{i\downarrow}^a + U' \sum_{iab} n_{i}^a n_{i}^b + V \sum_{\langle ij \rangle ab} n_{i}^a n_{j}^b - J_H \sum_{iab} S_{i}^a S_{b}^b + \Delta \sum_{i\sigma} (n_{i\sigma}^{A_{1g}} - n_{i\sigma}^{E_{g1}}) \tag{4}
\]

- \(\epsilon_k \) the one electron band dispersion of Fe(B)-t2g, act as a bath in DMFT. Note that we will do DMFT on minority spin sector only.
- \(a, b \) label the \(A_{1g}, E_{g1} \) orbitals. under Jahn Teller(JT) t2g orbital split into doublet \(E_{g1} \) and signlet \(A_{1g} \) with LDA value of \(\Delta=0.019 \text{ev} \)
- from constrained LDA \(U=4.1 \text{ev}, U'=1.7 \text{ev}, V=0.4 \text{ev}, J_H = 1.0 \text{ev} \)
- In single site DMFT we will decouple \(V \) in the HF approximation.
Instead of adding constant potential we will add frequency dependent self energy.

\[G_a^{-1}(w) = [G_a^0(w)]^{-1} - \Sigma_a(w) \] \hspace{1cm} (5)

\[G_a(w) = \frac{1}{N} \sum_k \frac{1}{w + \mu - \Sigma_a(w) - \epsilon_{k\sigma}} \] \hspace{1cm} (6)
Instead of adding constant potential we will add frequency dependent self energy.

\[G_a^{-1}(w) = [G_a^0(w)]^{-1} - \Sigma_a(w) \]

(5)

\[G_a(w) = \frac{1}{N} \sum_k \frac{1}{w + \mu - \Sigma_a(w) - \epsilon_{k\sigma}} \]

(6)

where \(\epsilon_{k\sigma} \) LSDA dos of t2g B sublattice orbital. self energy is given by

\[\Sigma_a(w) = \frac{\sum_b A_{ab} \Sigma_{ab}^{(2)}}{1 - \sum_b B_{ab} \Sigma_{ab}^{(2)}} \]

(7)
Instead of adding constant potential we will add frequency dependent self energy.

\[G_a^{-1}(w) = [G_a^0(w)]^{-1} - \Sigma_a(w) \] \hspace{1cm} (5)

\[G_a(w) = \frac{1}{N} \sum_k \frac{1}{w + \mu - \Sigma_a(w) - \epsilon_{k\sigma}} \] \hspace{1cm} (6)

where \(\epsilon_{k\sigma} \) LSDA dos of t2g B sublattice orbital. self energy is given by

\[\Sigma_a(w) = \frac{\sum_b A_{ab} \Sigma_{ab}^{(2)}}{1 - \sum_b B_{ab} \Sigma_{ab}^{(2)}} \] \hspace{1cm} (7)

where \(A_{ab} \) and \(B_{ab} \) are choose to get the atomic limit solution and free electron limit and

\[\Sigma_{ab}^{(2)} = N_{ab} \frac{U_{ab}^2}{\beta^2} \sum_{lm} G_a^0(iw_l) G_b^0(iw_m) G_b^0(iw_l + iw_m - iw) \] \hspace{1cm} (8)
\[H = \sum_{k\alpha\sigma} \epsilon_k^a c_k^a c_\sigma^a + U \sum_{ia} n_i^a \uparrow n_i^a \downarrow + U' \sum_{iab} n_i^a n_i^b + V \sum_{(ij)ab} n_i^a n_j^b - J_H \sum_{iab} S_i^a S_i^b + \Delta \sum_{i\sigma} (n_{i\sigma}^{A1g} - n_{i\sigma}^{E_{g1}}) \]

(9)

orbital correlations and associated Jahn-Teller (JT) effects in a fully magnetically polarized situation might be essential ingredients for understanding the Verwey transition.
Results

\[
H = \sum_{k\alpha\sigma} c^a_k c^a_{k\sigma} c^a_{K\sigma} + U \sum_{ia} n^a_{i\uparrow} n^a_{i\downarrow} + U' \sum_{iab} n^a_i n^b_i + V \sum_{\langle ij \rangle ab} n^a_i n^b_j - JH \sum_{iab} S^a_i S^b_i + \Delta \sum_{i\sigma} (n_{i1g}^{A1g} - n_{i1g}^{Eg1})
\]

(9)

- orbital correlations and associated Jahn-Teller (JT) effects in a fully magnetically polarized situation might be essential ingredients for understanding the Verwey transition.

- Up to critical value \(\Delta_c = 0.01\) of the crystal-field splitting, all curves lie essentially on the one corresponding to the high-T phase.
Results

\[H = \sum_{ka\sigma} c_k^a c_{k\sigma} c_{K\sigma}^a + U \sum_{ia} n_{i\uparrow}^a n_{i\downarrow}^a + U' \sum_{ia} n_{i\uparrow}^a n_{i\downarrow}^b + V \sum_{\langle ij \rangle ab} n_{i\uparrow}^a n_{j\downarrow}^b - J_H \sum_{iab} S_i^a S_i^b + \Delta \sum_{i\sigma} (n_{i\sigma}^{A1g} - n_{i\sigma}^{Eg1}) \]

(9)

- Orbital correlations and associated Jahn-Teller (JT) effects in a fully magnetically polarized situation might be essential ingredients for understanding the Verwey transition.
- Up to critical value \(\Delta_c = 0.01 \) of the crystal-field splitting, all curves lie essentially on the one corresponding to the high-T phase.
- For \(\Delta > \Delta_c \), however, we clearly see that all the curves seem to collapse onto the result for the low-T phase.
Results

\[H = \sum_{k, \alpha} c_{k, \alpha}^a c_{k, \sigma}^a c_{k, \sigma}^a + U \sum_{ia} n_{i, \uparrow}^a n_{i, \downarrow}^a + U' \sum_{iab} n_{i, \uparrow}^a n_{i, \downarrow}^b + V \sum_{\langle ij \rangle ab} n_{i, \uparrow}^a n_{j, \downarrow}^b - J_H \sum_{iab} S_{i, \uparrow}^a S_{i, \downarrow}^b + \Delta \sum_{i, \sigma} \left(n_{i, \sigma}^{A_{1g}} - n_{i, \sigma}^{E_{g1}} \right) \]

(9)

- orbital correlations and associated Jahn-Teller (JT) effects in a fully magnetically polarized situation might be essential ingredients for understanding the Verwey transition.
- Up to critical value \(\Delta_c = 0.01 \) of the crystal-field splitting, all curves lie essentially on the one corresponding to the high-T phase.
- For \(\Delta > \Delta_c \), however, we clearly see that all the curves seem to collapse onto the result for the low-T phase.
- Appreciable changes in dynamical SWT occur across \(\Delta_c \).
Results

\[H = \sum_{k \sigma} c_k^a c_{k \sigma}^a c_k^\sigma + U \sum_{ia} n_i^a n_i^\downarrow + U' \sum_{iab} n_i^a n_i^b + V \sum_{\langle ij \rangle ab} n_i^a n_j^b - J_H \sum_{iab} S_i^a S_i^b + \Delta \sum_{i \sigma} (n_{i \sigma}^{A_{1g}} - n_{i \sigma}^{E_{g1}}) \]

(9)

- Orbital correlations and associated Jahn-Teller (JT) effects in a fully magnetically polarized situation might be essential ingredients for understanding the Verwey transition.

- Up to critical value \(\Delta_c = 0.01 \) of the crystal-field splitting, all curves lie essentially on the one corresponding to the high-T phase.

- For \(\Delta > \Delta_c \), however, we clearly see that all the curves seem to collapse onto the result for the low-T phase.

- Appreciable changes in dynamical SWT occur across \(\Delta_c \).

- Implies that the charge gap increases rapidly as \(\Delta \) is raised above \(\Delta_c \).
$A_{1g} \equiv (xy+yz+zx)$

- red line corresponds to low temperature.
- Blue corresponds to High T solution.
Results

- $A_{1g} \equiv (xy+yz+zx)$
- The red line corresponds to low temperature. Blue corresponds to High T solution.
- $E_{g1} \equiv (2xy-yz-zx), (xy-yz)$.
- E_{g1} shows small change while A_{1g} shows noticeable change. But both indicate the insulating state.
Comparison with experimental results

- $Gap_{LT} = 0.087 \text{ ev}$ $Gap_{HT} = 0.051 \text{ ev}$
- $\rho = \exp\left(\frac{Gap}{K_B T}\right)^4$. The across the array transition jump is 90. Exp velu is 100.
- Their calculation does not require the explicit inclusion of charge order CO within DMFT.
Author propose that B-site JT distortions in a correlated multiorbital situation play a crucial role in understanding the changes in electronic structure across the Verwey transition in Fe₃O₄.

In the strongly correlated situation, small changes in the B-site octahedral distortions with T give rise to large changes in dynamical spectral weight transfer from low to high energies, which is captured in LDA+DMFT.
Thanks to Prof. H.R. Krishnamurthy, Prof. Manish Jain, Prof. Anil Kumar for useful Discussion.
Thanks to Prof. H.R. Krishnamurthy, Prof Manish Jain, Prof. Anil Kumar for useful Discussion.

Thank You all