Optimal random searches of revisitatable targets: crossover from superdiffusive to ballistic random walks

M. C. Santos,1,* M. G. E. da Luz,1,† E. P. Raposo,2,‡ and G. M. Viswanathan3,§

1Departamento de Física, UFPR, Curitiba, Brazil
2Departamento de Física, UFPE, Recife, Brazil
3Departamento de Física, UFAL, Maceio, Brazil

One of the most important aspects in the general search problem [1] of finding randomly located target sites is to characterize the role played by the nonrevisitability delay time \(\tau \) during which a previously found target becomes unavailable to the searcher [2]. By using an appropriate parameterization of the number of random walk steps undertaken between successive targets, as \(\tau \) increases from \(\tau \to 0 \) to \(\tau \to \infty \), we show that the optimal search strategy shifts, respectively, from a superdiffusive to a ballistic strategy of essentially rectilinear motion between the targets, in the case of sparse randomly distributed sites. The crossover between these limiting regimes is a function of \(\tau \). Such conclusions are shown to hold even if dissipative phenomena are considered in the searching dynamics [3]. We also discuss the results in the context of their application to animal foraging. [1] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley, Nature 401, 911 (1999). [2] E. P. Raposo, S. V. Buldyrev, M. C. Santos, M. G. E. da Luz, H. E. Stanley, and G. M. Viswanathan, Phys. Rev. Lett. 91, 240601 (2003). [3] M. G. E. da Luz, S. V. Buldyrev, S. Havlin, E. P. Raposo, H. E. Stanley, and G. M. Viswanathan, Physica A 295, 89 (2001).

*Electronic address: msantos@fisica.ufpr.br
†Electronic address: luz@fisica.ufpr.br
‡Electronic address: ernesto@df.ufpe.br
§Electronic address: gandhi@df.ufal.br